Deep Learning Fundamentals and Neural Network Architectures
Action | Key |
---|---|
Play / Pause | K or space |
Mute / Unmute | M |
Toggle fullscreen mode | F |
Select next subtitles | C |
Select next audio track | A |
Toggle automatic slides maximization | V |
Seek 5s backward | left arrow |
Seek 5s forward | right arrow |
Seek 10s backward | shift + left arrow or J |
Seek 10s forward | shift + right arrow or L |
Seek 60s backward | control + left arrow |
Seek 60s forward | control + right arrow |
Seek 1 frame backward | alt + left arrow |
Seek 1 frame forward | alt + right arrow |
Decrease volume | shift + down arrow |
Increase volume | shift + up arrow |
Decrease playback rate | < |
Increase playback rate | > |
Seek to end | end |
Seek to beginning | beginning |
Vous pouvez faire un clic droit sur les diapositives pour ouvrir le menu
S'abonner aux notifications
Si vous êtes abonné aux notifications, un e-mail vous sera envoyé pour toutes les annotations ajoutées.
Votre compte utilisateur n'a pas d'adresse e-mail.
Informations sur ce média
224 vues
This course provides an in-depth introduction to deep neural networks, covering their historical roots, key concepts, and modern applications. Students will explore the fundamentals of neural networks, including linear networks and components, and delve into practical implementations using PyTorch on GPU clusters. The course will discuss the evolution of neural networks, from their early beginnings to recent breakthroughs, and highlight the importance of understanding individual components to achieve optimal performance and generalization ability in deep learning. Through lectures and lab work, students will gain hands-on experience with neural networks, including convolutional, recurrent, and generative networks, and develop a solid foundation in this transformative field.
Date de création :
30 novembre 2020
Intervenants :
Jeremy Fix
Société :
CentraleSupélec
Lien vers la chaîne du média :
Mention SDI - Metz -